
D2.1b API for external contributors 

 

D2.1b API for external contributors 

D2.1b API for 
external 

contributors 

 

 

Deliverable information 

WP WP2  

Document dissemination level PU - public  

Deliverable type SW - software 

Lead  UCM 

Contributors All partners 

Document status Version for Zenodo 

Document version  V1.0 

Date 28/09/2022 

Document History 
 

Version Release date Summary of changes Partner 

V0.1  First draft released  

V1.0   Revision   

    

    

 

  



D2.1b API for external contributors 

 

D2.1b API for external contributors 

Project information 
 

Project start date: 1st of March 2021 

Project Duration: 36 months  

Project website:  https://isee4xai.com/ 

 

iSee consortium 
 

UCM UNIVERSIDAD COMPLUTENSE DE MADRID SPAIN 

RGU  ROBERT GORDON UNIVERSITY SCOTLAND 

BT BT FRANCE FRANCE 

UCC UNIVERSITY COLLEGE CORK IRELAND 

 
Contact:  hello@isee4xai.com 

 

Project Coordinator: 
Professor M Belen Díaz Agudo 

Instituto de Tecnología del Conocimiento 

Facultad de Informática, 

Universidad Complutense de Madrid 

C/ Profesor Jose Garcia Santesmases, 9 

Ciudad Universitaria 

28040 – Madrid, Spain 

  

https://isee4xai.com/
https://isee4xai.com/
mailto:hello@isee4xai.com


D2.1b API for external contributors 

 

D2.1b API for external contributors 

 

Summary 
This document describes the software that provides the API for external contributions 

to the iSee platform. This software is available through several repositories that are 

described next. First section provides a global description of the architecture, whereas 

the following ones contain the user/developer documentation for each module. 
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Global architecture 

As illustrated in the following figure, there are four different containers in our 

architecture to where external developers can contribute. 

 

The Explanation Library provides the XAI methods for the generation of explanations, 

while the AI Model Library contains the methods for the management of the models to 

be explained. Both of these containers utilize well-known libraries oriented to the 

development of machine-learning models, such as Scikit-learn, TensorFlow, Pytorch and 

so forth. The containers have direct access to a core file storage unit where the models 

and their additional configuration data are stored. Both libraries provide unified Rest 

Services APIs to support not only the functionality of the Explanation Experience Editor 

but also ad-hoc integration with external software. Both APIs have been developed in 

Python using the Flask Restful microframework. 
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The Explanation Library provides an unified layer to access and execute the explanation 

methods. These methods are implemented as an API that acts as a wrapper of third-

party modules and libraries, following the dependency injection pattern. 

To execute these explanation methods our platform also requires an additional module 

to manage the ML models to be executed and explained. For this task, we have 

developed the AI Model Library, that offers an additional API that allows uploading, 

updating, and managing the files associated with a ML model, as well as executing them. 

This module supports models exported from both Scikit-learn or TensorFlow. Thus, the 

Explanation Library can later access these files to generate explanations. 

This API of the AI Model Library is composed by two different sub-APIs that support 

either Tensorflow or ScikitLearn. Both share common features that are abstracted in the 

“generic” API. 
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Generic API of the AI Model Library 

The following document will explain the various functions needed to implement in 
order to communicate with the model library API for the iSee project. 

Requirements 

The client must implement the following capabilities: 

Retrieving a model’s parameters 

In order to retrieve the parameters provided when uploading a model to the API 
the function info must be called in GET mode. 

The function will return a json with the parameters. 

Here we have an example using Postman: 

 

Retrieving a model’s parameters 

Retrieve a dataset (optional) 

In order to obtain the dataset used to train a model from the API the function 
dataset must be called in GET mode. 

The function will return the dataset associated with the model. 

Here we have an example using Postman: 

 

Retrieving a model’s dataset 
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Predicting with an image 

If the model uses images as input, in order to make a prediction based on an image 
using a model uploaded to the API the function /Image/run must be called in POST 
mode using the following parameters in the Body form-data section: 

• image: this field must contain a file which corresponds to the image that we 
want to pass to the model. 

The function will return a message with the model prediction. 

Here we have an example using Postman: 

 

Predicting an image 

Predicting with a tabular set 

If the model uses a dataset as input, in order to make a prediction based on a 
dataset using a model uploaded to the API the function /Tabular/run must be 
called in POST mode using the following parameters in the Body form-data section: 

• data: this field must contain a text formatted as a json with a field named 
“instance” followed by an array containing the data to be passed to the 
model. 

The function will return a message with the model prediction. 

Here we have an example using Postman: 

 

Predicting with a dataset 
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Scikit-learn API of the Model Library 

The following document will explain how to call the various functions 
implemented in the model library API for the iSee project, in particular we will 
describe the behaviour for the sklearn version. 

Launching the API 

The API can be executed in two ways depending if an storage path for the models is 
passed as a parameter or not: 

Without an storage path 

Requirements 
• The directory containing the app.py file must also contain a folder named 

Models. 
• The libraries in the requirements.txt must be installed. 

Running the API 
1. A console must be opened in the directory containing the app.py file. 
2. Run the following command python app.py. 
3. The API should be running in a localhost and request can now be send. 

Here’s an example: 

 

Run no path 

With an storage path 

Requirements 
• The directory passed as an argument must exists. 
• The libraries in the requirements.txt must be installed. 

Running the API 
1. A console must be opened in the directory containing the app.py file. 
2. Run the following command python app.py "path". REMINDER: If the 

path contains spaces it must be written between quotation marks. 
3. The API should be running in a localhost and request can now be send. 

Here’s an example: 
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Run with path 

Basic functions 

Uploading a model 

In order to upload a model to the API the function upload_model must be called in 
POST mode using the following parameters in the Body form-data section: 

• file: this field must contain a the model that we wish to upload. 
• params: this field must contain a json formatted text with the various 

properties of the model. 
• id(optional): this field contains the id which will be used to refer to the 

uploaded model in the rest of the functions. If it is left blank a random id 
will be assigned. 

The function will return the id assigned to the model. 

Here we have an example using Postman: 

 

Uploading a model 

Updating a model 

In order to update an existing model to the API the function upload_model must be 
called in PUT mode using the following parameters in the Body form-data section: 

• file: this field must contain a the model that we wish to update. 
• params: this field must contain a json formatted text with the various 

properties of the model. 
• id: this field must contain the id of the model that we wish to update. 
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The function will return a message confirming the update of the model. 

Here we have an example using Postman: 

 

Updating a model 

Uploading a dataset 

In order to upload a model to the API the function dataset must be called in POST 
mode using the following parameters in the Body form-data section: 

• file: this field must contain a .pkl file which corresponds to the dataset that 
we want to upload. 

• id: this field must contain the id of the model whose dataset we are 
uploading. 

The function will return a message confirming the upload of the dataset. 

Here we have an example using Postman: 

 

Uploading a dataset 

Retrieve a dataset 

In order to obtain the dataset used to train a model from the API the function 
dataset must be called in GET mode using the following parameters in the URL 
parameter section: - id: this field must contain the id of the model whose dataset 
we wish to retrieve. 

The function will return the dataset associated with the id. 

Here we have an example using Postman: 
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Downloading a dataset 

Deleting a model 

In order to delete an uploaded model from the API the function delete must be 
called in DELETE mode using the following parameters in the Body form-data 
section: 

• id: this field must contain the id of the model we wish to delete. 

The function will return a message confirming the deletion. 

Here we have an example using Postman: 

 

Deleting a model 

Retrieving a model’s parameters 

In order to retrieve the parameters provided when uploading a model to the API 
the function info must be called in GET mode using the following parameters in the 
URL parameter section: 

• id: this field must contain the id of the model whose parameters we wish to 
retrieve. 

The function will return a json with the parameters. 

Here we have an example using Postman: 
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Retrieving a model’s parameters 

Predicting with an image 

In order to make a prediction based on an image using a model uploaded to the API 
the function /Image/run must be called in POST mode using the following 
parameters in the Body form-data section: 

• image: this field must contain a file which corresponds to the image that we 
want to pass to the model. 

• id: this field must contain the id of the model that we want to use to make 
the prediction. 

The function will return a message with the model prediction. 

Here we have an example using Postman: 

 

Predicting an image 

Predicting with a tabular set 

In order to make a prediction based on a dataset using a model uploaded to the API 
the function /Tabular/run must be called in POST mode using the following 
parameters in the Body form-data section: 

• data: this field must contain a text formatted as a json with a field named 
“instance” followed by an array containing the data to be passed to the 
model. 
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• id: this field must contain the id of the model that we want to use to make 
the prediction. 

The function will return a message with the model prediction. 

Here we have an example using Postman: 

 

Predicting an image 
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TensorFlow API of the Model Library 

The following document will explain how to call the various functions 
implemented in the model library API for the iSee project, in particular we will 
describe the behaviour for the TensorFlow version. 

Launching the API 

The API can be executed in two ways depending if an storage path for the models is 
passed as a parameter or not: 

Without an storage path 

Requirements 
• The directory containing the app.py file must also contain a folder named 

Models. 
• The libraries in the requirements.txt must be installed. 

Running the API 
4. A console must be opened in the directory containing the app.py file. 
5. Run the following command python app.py. 
6. The API should be running in a localhost and request can now be send. 

Here’s an example: 

 

Run no path 

With an storage path 

Requirements 
• The directory passed as an argument must exists. 
• The libraries in the requirements.txt must be installed. 

Running the API 
7. A console must be opened in the directory containing the app.py file. 
8. Run the following command python app.py "path". REMINDER: If the 

path contains spaces it must be written between quotation marks. 
9. The API should be running in a localhost and request can now be send. 

Here’s an example: 



D2.1b API for external contributors 

 

D2.1b API for external contributors 

 

Run with path 

Basic functions 

Uploading a model 

In order to upload a model to the API the function upload_model must be called in 
POST mode using the following parameters in the Body form-data section: 

• file: this field must contain a the model that we wish to upload. 
• params: this field must contain a json formatted text with the various 

properties of the model. 
• id(optional): this field contains the id which will be used to refer to the 

uploaded model in the rest of the functions. If it is left blank a random id 
will be assigned. 

The function will return the id assigned to the model. 

Here we have an example using Postman: 

 

Uploading a model 

Updating a model 

In order to update an existing model to the API the function upload_model must be 
called in PUT mode using the following parameters in the Body form-data section: 

• file: this field must contain a the model that we wish to update. 
• params: this field must contain a json formatted text with the various 

properties of the model. 
• id: this field must contain the id of the model that we wish to update. 
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The function will return a message confirming the update of the model. 

Here we have an example using Postman: 

 

Updating a model 

Uploading a dataset 

In order to upload a model to the API the function dataset must be called in POST 
mode using the following parameters in the Body form-data section: 

• file: this field must contain a .pkl file which corresponds to the dataset that 
we want to upload. 

• id: this field must contain the id of the model whose dataset we are 
uploading. 

The function will return a message confirming the upload of the dataset. 

Here we have an example using Postman: 

 

Uploading a dataset 

Retrieve a dataset 

In order to obtain the dataset used to train a model from the API the function 
dataset must be called in GET mode using the following parameters in the URL 
parameter section: - id: this field must contain the id of the model whose dataset 
we wish to retrieve. 

The function will return the dataset associated with the id. 

Here we have an example using Postman: 
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Uploading a dataset 

Deleting a model 

In order to delete an uploaded model from the API the function delete must be 
called in DELETE mode using the following parameters in the Body form-data 
section: 

• id: this field must contain the id of the model we wish to delete. 

The function will return a message confirming the deletion. 

Here we have an example using Postman: 

 

Uploading a dataset 

Retrieving a model’s parameters 

In order to retrieve the parameters provided when uploading a model to the API 
the function info must be called in GET mode using the following parameters in the 
URL parameter section: 

• id: this field must contain the id of the model whose parameters we wish to 
retrieve. 

The function will return a json with the parameters. 

Here we have an example using Postman: 
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Uploading a dataset 

Predicting with an image 

In order to make a prediction based on an image using a model uploaded to the API 
the function /Image/run must be called in POST mode using the following 
parameters in the Body form-data section: 

• image: this field must contain a file which corresponds to the image that we 
want to pass to the model. 

• id: this field must contain the id of the model that we want to use to make 
the prediction. 

The function will return a message with the model prediction. 

Here we have an example using Postman: 

 

Uploading a dataset 

Predicting with a tabular set 

In order to make a prediction based on a dataset using a model uploaded to the API 
the function /Tabular/run must be called in POST mode using the following 
parameters in the Body form-data section: 

• data: this field must contain a text formatted as a json with a field named 
“instance” followed by an array containing the data to be passed to the 
model. 
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• id: this field must contain the id of the model that we want to use to make 
the prediction. 

The function will return a message with the model prediction. 

Here we have an example using Postman: 

 

Uploading a dataset 
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Explainer Library 

Using the API with Postman 

This quick guide illustrates how to launch the Flask server and make requests to 
any of the explanation methods in the API using Postman. 

Launching with Python 
1) Clone the repository. 

2) From the root folder, create a virtual environment for the installation of the 
required libraries with: 

python -m venv . 

3) Use pip to install the dependencies from the requirements file. 
pip install -r requirements.txt 

4) Once all the dependencies have been installed, execute the script to launch 
the server with: 

python app.py 

Making Requests 

If the server was launched successfully, a similar message to the one in the image 
should appear, meaning that it is ready to receive requests to the specified address 
and port. 

 

ServerLaunched 

1) To make requests, open Postman and go to My Workspace > File > New Tab. 
2) To get information about how to use a specific method, we can make a GET 

request. In the URL bar, specify the address and port of the server, followed 
by the name of the method, and send the request. The response is displayed 
in the bottom part of the console. For example, for Tabular/Importance: 

 

Screenshot (119) 
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3) To execute the methods and get actual explanations, we have to make a 
POST request. To do so, change the request type to POST and go to Body > 
form-data. Here is where we specify the required parameters, such as the id, 
url, and the params object. These parameters are explained in greater detail 
below in the section About the parameters. In this example, I am using the 
psychology model available in the Models folder. The only parameter 
passed in this case was the id. 

 

Visualizing Explanations 

The responses to the HTTP requests are given in JSON format. However, most of 
the methods return responses that also contain the URLs to plots or graphs of the 
explanations in HTML or PNG format. Before accessing the explanations, it is 
necessary to change the default JSON mime-type. 

1) To visualize these explanations, click on the URL in the response. It will 
open a new request tab with the specified URL. 

2) Go to Headers and disable the Accept attribute. 
3) Add a new header with the same name, Accept, as a key and specify the 

value according to the type of file you are trying to access. For .png files, 
specify image/png. For .html files, specify text/html. Finally, send the 
request. 



D2.1b API for external contributors 

 

D2.1b API for external contributors 

 

Screenshot (158) 

About the Parameters 

The required parameters may be different depending on the explainer, so it is 
recommended to see the documentation provided by the get method of the 
explainer being used. 

• id: the id is a 10-character long string composed of letters and/or numbers. 
It is used to access the server space dedicated to the model to be explained. 
This space is a folder with the same name as the id located in the Models 
folder. This folder is created by the “Model AI Library” when a user uploads 
a model file (or an external URL), the training data (if required), and specific 
information about the model. Note that if you want to use your own 
model, you a folder with the followinf files to the “Models” folder: 

– Model File: The trained prediction model given as a compressed file. 
The extension must match the backend being used i.e. a .pkl file for 
Scikit-learn (use Joblib library), .pt for PyTorch, or .h5 for 
TensorFlow models. The name of the files must be the same as the id. 
For models with different backends, it is possible to upload a .pkl, 
but it is necessary that the prediction function of the model is called 
‘predict’. 

– Data File: Pandas DataFrame containing the training data given as a 
.pkl file (use Joblib library). The name of this file must be the id 
concatenates with the string “_data”, i.e: PSYCHOLOGY_data.pkl. The 
target class must be the last column of the DataFrame. Currently, it is 
only needed for tabular data models. 

– Model Info: JSON file containing the characteristics of the model, also 
referred to as model attributes. Some attributes ar mandatory, such 
as the alias of the model, which is the common name that will be 
assigned to it. Also the backend and the task performed by the model 
are required in most cases. Other attributes are optional, such as the 
names of the features for tabular data, the categorical features, the 
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labels of the output classes, etc. Even though some of these attributes 
may be optional, they may considerably improve the quality of the 
explanation, mostly from a visualization point of view. Note that 
model attribues are static, they don’t vary from execution to 
execution. Please refer to the model_info_attributes.txt file to see the 
currently defined attributes among all the explainers available. 

  Note: Regardless of the uploaded files, all the methods require an id to be 
provided. If you want to test a method with your own model, upload a 
folder containing the previously described files to the Models folder, 
assigning an id of your choice. See the example below for a model with id 
“PSYCHOLOGY”. 

   

• url: External URL of the prediction function passed as a string. This 
parameter provides an alternative when the model owners do not want to 
upload the model file and the explanation method is able to work with a 
prediction function instead of a model object. The URL is ignored if a 
model file was uploaded to the server. This related server must be able 
to handle a POST request receiving a multi-dimensional array of N data 
points as inputs (instances represented as arrays). It must return an array 
of N outputs (predictions for each instance). Refer to the External URLs 
Examples folder if you want to quickly create a service using Flask to 
provide this method. Please see the example in the section below. 

• instance: This is a mandatory attribute for local methods, as it is the 
instance that will be explained. It is an array containing the feature values 
(which must be in the same order that the model expects). For images, it is a 
matrix representing the pixels. It is also possible for image explainers to 
pass a file instead of the matrix using the “image” argument. 

• params: dictionary with the specific execution parameters passed to the 
explanation method. These parameters are optional and depend on the 
method being used. The value assigned to this parameters may signficantly 
change the outcome of an explanation. For example, the “target_class” of a 
counterfactual is an execution parameter. Refer to the documentation of 
each method to know the configuration parameters that can be provided. 

Getting Explanations Using External URLs Models 

In some cases, uploading a model file to the server is not desired by the user or 
simply not possible. Some explanation methods provide an alternative, as they 
only need access to the prediction function of the model. The prediction function 
can be easily wrapped as an HTTP POST method so that the explainers can access 
the prediction function by making requests to a server administered by the user. 
However, the implementation of the POST method must attain the expected 
format: 

• The POST method must receive a parameter named “inputs” and 
return an array with the predictions. The format of the “inputs” 
parameter, as well as the output, must be as follows: 

http://model_info_attributes.txt/
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– For Tabular and Text models: 
• For Regression Models: 

– inputs: array of shape (n, f) where n is the number of 
instances and f is the number of features. 

– output: array of shape (n,) where n is the number of 
instances. Contains the predicted value for each 
instance. 

• For Classification Models: 
– inputs: array of shape (n, f) where n is the number of 

instances and f is the number of features. Contains the 
predicted probabilities of each class for each instance. 

– For Image models: 
• inputs: Array of shape (n, h, w) for black and white images, 

and shape (n, h, w, 3) for RGB images, where n is the number 
of images, h the pixel height, and w the pixel width. 

• output: array of shape (n, c) where n is the number of 
instances and c is the number of classes. Contains the 
predicted probabilities of each class for each image. 

Notice that if you are using a model from Tensorflow or Scikit-learn, the predict or 
predict_proba function of your model already matches this format. If you have 
models from different architectures, some additional wrapping code may be 
necessary to comply with this format. 

For illustration purposes, we will implement the POST method with Flask using the 
psychology model. Example implementations of external URL prediction functions 
are available in the External_URLs folder. 

1) If you are testing locally, launch the explainer libraries server as described 
before. 

2) For the server logic, load the previously trained model first. Then define the 
POST method and add the inputs parameter to the parser. Load the contents of the 
inputs parameter and pass them to the prediction function of your model. We use 
the predict_proba function, as the psychology model is a scikit-learn classifier. 
Finally, specify the path for the method by adding it to the API. Note: if you are 
testing locally, make sure to assign a different port from the explainer libraries 
server. 

import sys 
from flask import Flask 
from flask_restful import Api,Resource,reqparse 
import numpy as np 
import json 
import joblib 
 
cli = sys.modules['flask.cli'] 
cli.show_server_banner = lambda *x: None 
app = Flask(__name__) 
api = Api(app) 
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#Load the model 
model = joblib.load("PSYCHOLOGY.pkl") 
 
class Predict(Resource): 
    
    def post(self): 
        #Add the 'inputs' argument 
        parser = reqparse.RequestParser() 
        parser.add_argument("inputs", required=True) 
        args = parser.parse_args() 
         
        #Get the inputs and pass them to the prediction function 
        inputs = np.array(json.loads(args.get("inputs"))) 
        return model.predict_proba(inputs).tolist() 
 
# Add the resource to the API 
api.add_resource(Predict, '/Predict') 
 
if __name__ == '__main__': 
    app.run(host="0.0.0.0", port=5001) 

3) Run the server and test the POST method by passing the url parameter to the 
explanation method. Remember that the url is ignored if a model file was uploaded 
to the server, so make sure no model file is present in the corresponding folder. 

 

Screenshot (166) 

How to Collaborate to ExplainerLibraries 

1) Fork the repo and clone it to our local machine. 

2) Create our own branch. 

3) Add the explainer file and make the necessary modifications. 

4) Launch the application locally and test the new explainer. 

5) Push the changes and create a pull request for review. 



D2.1b API for external contributors 

 

D2.1b API for external contributors 

Adding New Explainers to the Catalogue 

1) To add a new explainer, it is necessary to create a new Resource. First, go to the 
resources/explainers folder and select the folder corresponding to the data type of 
the explainer you want to add (If your explainer works with a different data type, 
please add the corresponding folder to the resources folder). For illustration 
purposes, we will walk through the steps of adding a “new” explainer (LIME 
tabular). 

2) Inside the appropriate folder, create a new .py file with the name of your 
explainer. In our case, we create the lime.py file inside 
resources/explainers/tabular/ . 

3) Create a class for the explainer. This class needs to have two different methods: 
post and get. You may also need to add an __init__ method to access the paths of 
the models and uploads folders. In our example: 

from flask_restful import Resource 
 
class Lime(Resource): 
 
        def __init__(self,model_folder,upload_folder): 
        self.model_folder = model_folder 
        self.upload_folder = upload_folder   
     
    def post(self): 
        return {} 
         
    def get(self): 
        return {} 

5) In the post method, define the mandatory arguments that must be passed for 
the explainer to get an explanation. The method must receive at least an id to 
access the folder related to the model. After parsing the arguments, use the 
function get_model_files, passing the id to fetch the model, data, and info files. It is 
possible that some of these files do not exist, so make the appropriate checks 
before using them. Generally, the steps involve loading the Dataframe with the 
training data if it exists, then getting the necessary attributes from the info file, 
then getting the prediction function if possible, and finally getting the 
configuration parameters from the params object. 

class Lime(Resource): 
 
def post(self): 
        parser = reqparse.RequestParser() 
        parser.add_argument('id',required=True) 
        parser.add_argument('instance',required=True) 
        parser.add_argument('url') 
        parser.add_argument('params') 
        args = parser.parse_args() 
         
        _id = args.get("id") 
        url = args.get("url") 
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        instance = json.loads(args.get("instance")) 
        params=args.get("params") 
        params_json={} 
        if(params !=None): 
            params_json = json.loads(params) 
         
        #Getting model info, data, and file from local repository 
        model_file, model_info_file, data_file = 
get_model_files(_id,self.model_folder) 
 
        ## loading data 
        if data_file!=None: 
            dataframe = joblib.load(data_file) ##error handling? 
        else: 
            raise Exception("The training data file was not 
provided.") 
 
        ##getting params from info 
        model_info=json.load(model_info_file) 
        backend = model_info["backend"]  ##error handling? 
        kwargsData = dict(mode="classification", feature_names=None, 
categorical_features=None,categorical_names=None, class_names=None) 
        if "model_task" in model_info: 
            kwargsData["mode"] = model_info["model_task"] 
        if "feature_names" in model_info: 
            kwargsData["feature_names"] = model_info["feature_names"] 
        if "categorical_features" in model_info: 
            kwargsData["categorical_features"] = 
model_info["categorical_features"] 
        if "categorical_names" in model_info: 
            kwargsData["categorical_names"] = {int(k):v for k,v in 
model_info["categorical_names"].items()} 
        if "output_names" in model_info: 
            kwargsData["class_names"] = model_info["output_names"] 
 
        ## getting predict function 
        predic_func=None 
        if model_file!=None: 
            if backend=="TF1" or backend=="TF2": 
                model=h5py.File(model_file, 'w') 
                mlp = tf.keras.models.load_model(model) 
                predic_func=mlp 
            elif backend=="sklearn": 
                mlp = joblib.load(model_file) 
                predic_func=mlp.predict_proba 
            elif backend=="PYT": 
                mlp = torch.load(model_file) 
                predic_func=mlp.predict 
            else: 
                mlp = joblib.load(model_file) 
                predic_func=mlp.predict 
        elif url!=None: 
            def predict(X): 



D2.1b API for external contributors 

 

D2.1b API for external contributors 

                return np.array(json.loads(requests.post(url, 
data=dict(inputs=str(X.tolist()))).text)) 
            predic_func=predict 
        else: 
            raise Exception("Either a stored model or a valid URL for 
the prediction function must be provided.") 
 
   
         
        #getting params from request 
        kwargsData2 = dict(labels=(1,), top_labels=None, 
num_features=None) 
        if "output_classes" in params_json: #labels 
            kwargsData2["labels"] = 
json.loads(params_json["output_classes"]) if 
isinstance(params_json["output_classes"],str) else 
params_json["output_classes"]   
        if "top_classes" in params_json: 
            kwargsData2["top_labels"] = 
int(params_json["top_classes"])   #top labels 
        if "num_features" in params_json: 
            kwargsData2["num_features"] = 
int(params_json["num_features"]) 
 
    ... 

6) Add the actual code for the generation of the explanation to the post method. 
This depends entirely on the explanation method being used. Once the explanation 
has been created, convert it to a JSON format if necessary. If the explanation is 
returned as an html or png file, use the save_file_info function to get the upload 
folder path, the name that will be given to the file, and the url (getcall) that will be 
used to access the file. Save the file using this data and append the URL to the 
returned JSON. Note: the URL to access the file returned by save_file_info does not 
include the extension of the file, so it is necessary to append it at the end as it is 
shown in the example. 

class Lime(Resource): 
 
def post(self): 
 
    ... 
             
    explainer = 
lime.lime_tabular.LimeTabularExplainer(dataframe.drop(dataframe.column
s[len(dataframe.columns)-1], axis=1, inplace=False).to_numpy(), 
                                                            **{k: v 
for k, v in kwargsData.items() if v is not None}) 
        explanation = explainer.explain_instance(np.array(instance, 
dtype='f'), predic_func, **{k: v for k, v in kwargsData2.items() if v 
is not None})  
         
        ## Formatting json explanation 
        ret = explanation.as_map() 
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        ret = {str(k):[(int(i),float(j)) for (i,j) in v] for k,v in 
ret.items()} 
        if kwargsData["class_names"]!=None: 
            ret = {kwargsData["class_names"][int(k)]:v for k,v in 
ret.items()} 
        if kwargsData["feature_names"]!=None: 
            ret = {k:[(kwargsData["feature_names"][i],j) for (i,j) in 
v] for k,v in ret.items()} 
        ret=json.loads(json.dumps(ret)) 
 
        ## saving to Uploads 
        upload_folder, filename, getcall = 
save_file_info(request.path) 
        hti = Html2Image() 
        hti.output_path= upload_folder 
        hti.screenshot(html_str=explanation.as_html(), 
save_as=filename+".png")    
        explanation.save_to_file(upload_folder+filename+".html") 
         
        
response={"plot_html":getcall+".html","plot_png":getcall+".png","expla
nation":ret} 
        return response 

7) For the get method, return a dictionary that serves as documentation for the 
explainer that is being implemented. In our implementations, we include a brief 
description of the explainer method and the parameters to the request, as well as 
the configuration parameters that should be passed in the params dictionary. If 
necessary, we also include an example of the params object. For example, for the 
Tabular/LIME implementation: 

    def get(self): 
                return { 
        "_method_description": "LIME perturbs the input data samples 
in order to train a simple model that approximates the prediction for 
the given instance and similar ones. " 
                           "The explanation contains the weight of 
each attribute to the prediction value. This method accepts 4 
arguments: "  
                           "the 'id', the 'instance', the 
'url'(optional),  and the 'params' dictionary (optiohnal) with the 
configuration parameters of the method. " 
                           "These arguments are described below.", 
        "id": "Identifier of the ML model that was stored locally.", 
        "instance": "Array representing a row with the feature values 
of an instance not including the target class.", 
        "url": "External URL of the prediction function. Ignored if a 
model file was uploaded to the server. " 
               "This url must be able to handle a POST request 
receiving a (multi-dimensional) array of N data points as inputs 
(instances represented as arrays). It must return a array of N outputs 
(predictions for each instance).", 
        "params": {  
                "output_classes" : "(Optional) Array of ints 
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representing the classes to be explained.", 
                "top_classes": "(Optional) Int representing the number 
of classes with the highest prediction probability to be explained. 
Overrides 'output_classes' if provided.", 
                "num_features": "(Optional) Int representing the 
maximum number of features to be included in the explanation." 
                } 

8) Lastly, add the class as a resource and specify its route in the app.py and in the 
explainerslist.py files. Also update the model_info_attributes.txt file if you are 
using a new model attribute that was not included before. In our example: 

from resources.explainers.tabular.lime import Lime 
api.add_resource(Lime, '/Tabular/LIME') 
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Software Repositories 

Github Repositories 
 
https://github.com/isee4xai/iSeeBackend/tree/dev/AI%20Mo

del%20lib 

 
https://github.com/isee4xai/ExplainerLibraries 

 

Reproducible Capsule 
 
https://explainers-dev.isee4xai.com 

 
https://models-tf-dev.isee4xai.com 

 
https://models-sk-dev.isee4xai.com 

 

  

https://github.com/isee4xai/iSeeBackend/tree/dev/AI%20Model%20lib
https://github.com/isee4xai/iSeeBackend/tree/dev/AI%20Model%20lib
https://github.com/isee4xai/ExplainerLibraries
https://explainers-dev.isee4xai.com/
https://models-tf-dev.isee4xai.com/
https://models-sk-dev.isee4xai.com/
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Source code repository branching conventions  

Git and GitHub will be used to control the development of the different modules of the 

iSee platform. In order to ensure a high quality of the development and the 

management of the different code source repositories, the following rules will be 

applied: 

 

● The ‘main’ branch must only contain stable code and the different releases of 

the iSee modules.  No direct pushes are allowed to this branch; all commits must 

be pushed through Pull Requests and will be merged into the ‘main’ branch after 

a code review.  

 

● The ‘dev’ branch is the main development branch that contains the code that 

will be deployed on the development test platform.  An automated continuous 

integration / deployment (CI/CD) workflow will be created to a) build the virtual 
container and b) deploy it on the test platform when a new code is pushed to 

this branch.   

As for the ‘main’ branch, no direct pushes are allowed to this branch; all commits 
should be pushed through Pull Requests.  

 

● Other (temporary) branches: these are the branches that can be created and 
deleted when needed, for bug fixes, experimental testing and new features. 

These branches  must have a meaningful naming and be deleted when no longer 

used. 

 

● iSee developers should work on their own branches and create a Pull Request 

when code is ready to be deployed. 
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Naming convention of the containers 

All iSee modules are delivered as Docker containers (or similar technology) to promote 

the scalability and stability of the platform. The naming/tagging convention of these 

containers are as follow: 

 

isee4xai/<module>:<tag> 

 

where 

● <module> is the module name aligned with code source repository name. 

● <tag> can be either: 

○ ‘dev’: the current code at development branch  

○ ‘X.Y’:  (eg: 1.2) the major and minor versions of official stable releases 

○ ‘latest’: the latest official stable release.  
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