
D2.1b API for external contributors

D2.1b API for external contributors

D2.1b API for
external

contributors

Deliverable information

WP WP2

Document dissemination level PU - public

Deliverable type SW - software

Lead UCM

Contributors All partners

Document status Version for Zenodo

Document version V1.0

Date 28/09/2022

Document History

Version Release date Summary of changes Partner

V0.1 First draft released

V1.0 Revision

D2.1b API for external contributors

D2.1b API for external contributors

Project information

Project start date: 1st of March 2021

Project Duration: 36 months

Project website: https://isee4xai.com/

iSee consortium

UCM UNIVERSIDAD COMPLUTENSE DE MADRID SPAIN

RGU ROBERT GORDON UNIVERSITY SCOTLAND

BT BT FRANCE FRANCE

UCC UNIVERSITY COLLEGE CORK IRELAND

Contact: hello@isee4xai.com

Project Coordinator:
Professor M Belen Díaz Agudo

Instituto de Tecnología del Conocimiento

Facultad de Informática,

Universidad Complutense de Madrid

C/ Profesor Jose Garcia Santesmases, 9

Ciudad Universitaria

28040 – Madrid, Spain

https://isee4xai.com/
https://isee4xai.com/
mailto:hello@isee4xai.com

D2.1b API for external contributors

D2.1b API for external contributors

Summary
This document describes the software that provides the API for external contributions

to the iSee platform. This software is available through several repositories that are

described next. First section provides a global description of the architecture, whereas

the following ones contain the user/developer documentation for each module.

D2.1b API for external contributors

D2.1b API for external contributors

Table of Contents

Global architecture 6

Generic API of the AI Model Library 8
Requirements 8

Retrieving a model’s parameters 8
Retrieve a dataset (optional) 8
Predicting with an image 9
Predicting with a tabular set 9

Scikit-learn API of the Model Library 11
Launching the API 11

Without an storage path 11
Requirements 11
Running the API 11

With an storage path 11
Requirements 11
Running the API 11

Basic functions 12
Uploading a model 12
Updating a model 12
Uploading a dataset 13
Retrieve a dataset 13
Deleting a model 14
Retrieving a model’s parameters 14
Predicting with an image 15
Predicting with a tabular set 15

TensorFlow API of the Model Library 17
Launching the API 17

Without an storage path 17
Requirements 17
Running the API 17

With an storage path 17
Requirements 17
Running the API 17

D2.1b API for external contributors

D2.1b API for external contributors

Basic functions 18
Uploading a model 18
Updating a model 18
Uploading a dataset 19
Retrieve a dataset 19
Deleting a model 20
Retrieving a model’s parameters 20
Predicting with an image 21
Predicting with a tabular set 21

Explainer Library 23
Using the API with Postman 23

Launching with Python 23
Making Requests 23
Visualizing Explanations 24

About the Parameters 25
Getting Explanations Using External URLs Models 26
How to Collaborate to ExplainerLibraries 28
Adding New Explainers to the Catalogue 29

Software Repositories 34

Source code repository branching conventions 35

Naming convention of the containers 36

D2.1b API for external contributors

D2.1b API for external contributors

Global architecture

As illustrated in the following figure, there are four different containers in our

architecture to where external developers can contribute.

The Explanation Library provides the XAI methods for the generation of explanations,

while the AI Model Library contains the methods for the management of the models to

be explained. Both of these containers utilize well-known libraries oriented to the

development of machine-learning models, such as Scikit-learn, TensorFlow, Pytorch and

so forth. The containers have direct access to a core file storage unit where the models

and their additional configuration data are stored. Both libraries provide unified Rest

Services APIs to support not only the functionality of the Explanation Experience Editor

but also ad-hoc integration with external software. Both APIs have been developed in

Python using the Flask Restful microframework.

D2.1b API for external contributors

D2.1b API for external contributors

The Explanation Library provides an unified layer to access and execute the explanation

methods. These methods are implemented as an API that acts as a wrapper of third-

party modules and libraries, following the dependency injection pattern.

To execute these explanation methods our platform also requires an additional module

to manage the ML models to be executed and explained. For this task, we have

developed the AI Model Library, that offers an additional API that allows uploading,

updating, and managing the files associated with a ML model, as well as executing them.

This module supports models exported from both Scikit-learn or TensorFlow. Thus, the

Explanation Library can later access these files to generate explanations.

This API of the AI Model Library is composed by two different sub-APIs that support

either Tensorflow or ScikitLearn. Both share common features that are abstracted in the

“generic” API.

D2.1b API for external contributors

D2.1b API for external contributors

Generic API of the AI Model Library

The following document will explain the various functions needed to implement in
order to communicate with the model library API for the iSee project.

Requirements

The client must implement the following capabilities:

Retrieving a model’s parameters

In order to retrieve the parameters provided when uploading a model to the API
the function info must be called in GET mode.

The function will return a json with the parameters.

Here we have an example using Postman:

Retrieving a model’s parameters

Retrieve a dataset (optional)

In order to obtain the dataset used to train a model from the API the function
dataset must be called in GET mode.

The function will return the dataset associated with the model.

Here we have an example using Postman:

Retrieving a model’s dataset

D2.1b API for external contributors

D2.1b API for external contributors

Predicting with an image

If the model uses images as input, in order to make a prediction based on an image
using a model uploaded to the API the function /Image/run must be called in POST
mode using the following parameters in the Body form-data section:

• image: this field must contain a file which corresponds to the image that we
want to pass to the model.

The function will return a message with the model prediction.

Here we have an example using Postman:

Predicting an image

Predicting with a tabular set

If the model uses a dataset as input, in order to make a prediction based on a
dataset using a model uploaded to the API the function /Tabular/run must be
called in POST mode using the following parameters in the Body form-data section:

• data: this field must contain a text formatted as a json with a field named
“instance” followed by an array containing the data to be passed to the
model.

The function will return a message with the model prediction.

Here we have an example using Postman:

Predicting with a dataset

D2.1b API for external contributors

D2.1b API for external contributors

D2.1b API for external contributors

D2.1b API for external contributors

Scikit-learn API of the Model Library

The following document will explain how to call the various functions
implemented in the model library API for the iSee project, in particular we will
describe the behaviour for the sklearn version.

Launching the API

The API can be executed in two ways depending if an storage path for the models is
passed as a parameter or not:

Without an storage path

Requirements
• The directory containing the app.py file must also contain a folder named

Models.
• The libraries in the requirements.txt must be installed.

Running the API
1. A console must be opened in the directory containing the app.py file.
2. Run the following command python app.py.
3. The API should be running in a localhost and request can now be send.

Here’s an example:

Run no path

With an storage path

Requirements
• The directory passed as an argument must exists.
• The libraries in the requirements.txt must be installed.

Running the API
1. A console must be opened in the directory containing the app.py file.
2. Run the following command python app.py "path". REMINDER: If the

path contains spaces it must be written between quotation marks.
3. The API should be running in a localhost and request can now be send.

Here’s an example:

D2.1b API for external contributors

D2.1b API for external contributors

Run with path

Basic functions

Uploading a model

In order to upload a model to the API the function upload_model must be called in
POST mode using the following parameters in the Body form-data section:

• file: this field must contain a the model that we wish to upload.
• params: this field must contain a json formatted text with the various

properties of the model.
• id(optional): this field contains the id which will be used to refer to the

uploaded model in the rest of the functions. If it is left blank a random id
will be assigned.

The function will return the id assigned to the model.

Here we have an example using Postman:

Uploading a model

Updating a model

In order to update an existing model to the API the function upload_model must be
called in PUT mode using the following parameters in the Body form-data section:

• file: this field must contain a the model that we wish to update.
• params: this field must contain a json formatted text with the various

properties of the model.
• id: this field must contain the id of the model that we wish to update.

D2.1b API for external contributors

D2.1b API for external contributors

The function will return a message confirming the update of the model.

Here we have an example using Postman:

Updating a model

Uploading a dataset

In order to upload a model to the API the function dataset must be called in POST
mode using the following parameters in the Body form-data section:

• file: this field must contain a .pkl file which corresponds to the dataset that
we want to upload.

• id: this field must contain the id of the model whose dataset we are
uploading.

The function will return a message confirming the upload of the dataset.

Here we have an example using Postman:

Uploading a dataset

Retrieve a dataset

In order to obtain the dataset used to train a model from the API the function
dataset must be called in GET mode using the following parameters in the URL
parameter section: - id: this field must contain the id of the model whose dataset
we wish to retrieve.

The function will return the dataset associated with the id.

Here we have an example using Postman:

D2.1b API for external contributors

D2.1b API for external contributors

Downloading a dataset

Deleting a model

In order to delete an uploaded model from the API the function delete must be
called in DELETE mode using the following parameters in the Body form-data
section:

• id: this field must contain the id of the model we wish to delete.

The function will return a message confirming the deletion.

Here we have an example using Postman:

Deleting a model

Retrieving a model’s parameters

In order to retrieve the parameters provided when uploading a model to the API
the function info must be called in GET mode using the following parameters in the
URL parameter section:

• id: this field must contain the id of the model whose parameters we wish to
retrieve.

The function will return a json with the parameters.

Here we have an example using Postman:

D2.1b API for external contributors

D2.1b API for external contributors

Retrieving a model’s parameters

Predicting with an image

In order to make a prediction based on an image using a model uploaded to the API
the function /Image/run must be called in POST mode using the following
parameters in the Body form-data section:

• image: this field must contain a file which corresponds to the image that we
want to pass to the model.

• id: this field must contain the id of the model that we want to use to make
the prediction.

The function will return a message with the model prediction.

Here we have an example using Postman:

Predicting an image

Predicting with a tabular set

In order to make a prediction based on a dataset using a model uploaded to the API
the function /Tabular/run must be called in POST mode using the following
parameters in the Body form-data section:

• data: this field must contain a text formatted as a json with a field named
“instance” followed by an array containing the data to be passed to the
model.

D2.1b API for external contributors

D2.1b API for external contributors

• id: this field must contain the id of the model that we want to use to make
the prediction.

The function will return a message with the model prediction.

Here we have an example using Postman:

Predicting an image

D2.1b API for external contributors

D2.1b API for external contributors

TensorFlow API of the Model Library

The following document will explain how to call the various functions
implemented in the model library API for the iSee project, in particular we will
describe the behaviour for the TensorFlow version.

Launching the API

The API can be executed in two ways depending if an storage path for the models is
passed as a parameter or not:

Without an storage path

Requirements
• The directory containing the app.py file must also contain a folder named

Models.
• The libraries in the requirements.txt must be installed.

Running the API
4. A console must be opened in the directory containing the app.py file.
5. Run the following command python app.py.
6. The API should be running in a localhost and request can now be send.

Here’s an example:

Run no path

With an storage path

Requirements
• The directory passed as an argument must exists.
• The libraries in the requirements.txt must be installed.

Running the API
7. A console must be opened in the directory containing the app.py file.
8. Run the following command python app.py "path". REMINDER: If the

path contains spaces it must be written between quotation marks.
9. The API should be running in a localhost and request can now be send.

Here’s an example:

D2.1b API for external contributors

D2.1b API for external contributors

Run with path

Basic functions

Uploading a model

In order to upload a model to the API the function upload_model must be called in
POST mode using the following parameters in the Body form-data section:

• file: this field must contain a the model that we wish to upload.
• params: this field must contain a json formatted text with the various

properties of the model.
• id(optional): this field contains the id which will be used to refer to the

uploaded model in the rest of the functions. If it is left blank a random id
will be assigned.

The function will return the id assigned to the model.

Here we have an example using Postman:

Uploading a model

Updating a model

In order to update an existing model to the API the function upload_model must be
called in PUT mode using the following parameters in the Body form-data section:

• file: this field must contain a the model that we wish to update.
• params: this field must contain a json formatted text with the various

properties of the model.
• id: this field must contain the id of the model that we wish to update.

D2.1b API for external contributors

D2.1b API for external contributors

The function will return a message confirming the update of the model.

Here we have an example using Postman:

Updating a model

Uploading a dataset

In order to upload a model to the API the function dataset must be called in POST
mode using the following parameters in the Body form-data section:

• file: this field must contain a .pkl file which corresponds to the dataset that
we want to upload.

• id: this field must contain the id of the model whose dataset we are
uploading.

The function will return a message confirming the upload of the dataset.

Here we have an example using Postman:

Uploading a dataset

Retrieve a dataset

In order to obtain the dataset used to train a model from the API the function
dataset must be called in GET mode using the following parameters in the URL
parameter section: - id: this field must contain the id of the model whose dataset
we wish to retrieve.

The function will return the dataset associated with the id.

Here we have an example using Postman:

D2.1b API for external contributors

D2.1b API for external contributors

Uploading a dataset

Deleting a model

In order to delete an uploaded model from the API the function delete must be
called in DELETE mode using the following parameters in the Body form-data
section:

• id: this field must contain the id of the model we wish to delete.

The function will return a message confirming the deletion.

Here we have an example using Postman:

Uploading a dataset

Retrieving a model’s parameters

In order to retrieve the parameters provided when uploading a model to the API
the function info must be called in GET mode using the following parameters in the
URL parameter section:

• id: this field must contain the id of the model whose parameters we wish to
retrieve.

The function will return a json with the parameters.

Here we have an example using Postman:

D2.1b API for external contributors

D2.1b API for external contributors

Uploading a dataset

Predicting with an image

In order to make a prediction based on an image using a model uploaded to the API
the function /Image/run must be called in POST mode using the following
parameters in the Body form-data section:

• image: this field must contain a file which corresponds to the image that we
want to pass to the model.

• id: this field must contain the id of the model that we want to use to make
the prediction.

The function will return a message with the model prediction.

Here we have an example using Postman:

Uploading a dataset

Predicting with a tabular set

In order to make a prediction based on a dataset using a model uploaded to the API
the function /Tabular/run must be called in POST mode using the following
parameters in the Body form-data section:

• data: this field must contain a text formatted as a json with a field named
“instance” followed by an array containing the data to be passed to the
model.

D2.1b API for external contributors

D2.1b API for external contributors

• id: this field must contain the id of the model that we want to use to make
the prediction.

The function will return a message with the model prediction.

Here we have an example using Postman:

Uploading a dataset

D2.1b API for external contributors

D2.1b API for external contributors

Explainer Library

Using the API with Postman

This quick guide illustrates how to launch the Flask server and make requests to
any of the explanation methods in the API using Postman.

Launching with Python
1) Clone the repository.

2) From the root folder, create a virtual environment for the installation of the
required libraries with:

python -m venv .

3) Use pip to install the dependencies from the requirements file.
pip install -r requirements.txt

4) Once all the dependencies have been installed, execute the script to launch
the server with:

python app.py

Making Requests

If the server was launched successfully, a similar message to the one in the image
should appear, meaning that it is ready to receive requests to the specified address
and port.

ServerLaunched

1) To make requests, open Postman and go to My Workspace > File > New Tab.
2) To get information about how to use a specific method, we can make a GET

request. In the URL bar, specify the address and port of the server, followed
by the name of the method, and send the request. The response is displayed
in the bottom part of the console. For example, for Tabular/Importance:

Screenshot (119)

D2.1b API for external contributors

D2.1b API for external contributors

3) To execute the methods and get actual explanations, we have to make a
POST request. To do so, change the request type to POST and go to Body >
form-data. Here is where we specify the required parameters, such as the id,
url, and the params object. These parameters are explained in greater detail
below in the section About the parameters. In this example, I am using the
psychology model available in the Models folder. The only parameter
passed in this case was the id.

Visualizing Explanations

The responses to the HTTP requests are given in JSON format. However, most of
the methods return responses that also contain the URLs to plots or graphs of the
explanations in HTML or PNG format. Before accessing the explanations, it is
necessary to change the default JSON mime-type.

1) To visualize these explanations, click on the URL in the response. It will
open a new request tab with the specified URL.

2) Go to Headers and disable the Accept attribute.
3) Add a new header with the same name, Accept, as a key and specify the

value according to the type of file you are trying to access. For .png files,
specify image/png. For .html files, specify text/html. Finally, send the
request.

D2.1b API for external contributors

D2.1b API for external contributors

Screenshot (158)

About the Parameters

The required parameters may be different depending on the explainer, so it is
recommended to see the documentation provided by the get method of the
explainer being used.

• id: the id is a 10-character long string composed of letters and/or numbers.
It is used to access the server space dedicated to the model to be explained.
This space is a folder with the same name as the id located in the Models
folder. This folder is created by the “Model AI Library” when a user uploads
a model file (or an external URL), the training data (if required), and specific
information about the model. Note that if you want to use your own
model, you a folder with the followinf files to the “Models” folder:

– Model File: The trained prediction model given as a compressed file.
The extension must match the backend being used i.e. a .pkl file for
Scikit-learn (use Joblib library), .pt for PyTorch, or .h5 for
TensorFlow models. The name of the files must be the same as the id.
For models with different backends, it is possible to upload a .pkl,
but it is necessary that the prediction function of the model is called
‘predict’.

– Data File: Pandas DataFrame containing the training data given as a
.pkl file (use Joblib library). The name of this file must be the id
concatenates with the string “_data”, i.e: PSYCHOLOGY_data.pkl. The
target class must be the last column of the DataFrame. Currently, it is
only needed for tabular data models.

– Model Info: JSON file containing the characteristics of the model, also
referred to as model attributes. Some attributes ar mandatory, such
as the alias of the model, which is the common name that will be
assigned to it. Also the backend and the task performed by the model
are required in most cases. Other attributes are optional, such as the
names of the features for tabular data, the categorical features, the

D2.1b API for external contributors

D2.1b API for external contributors

labels of the output classes, etc. Even though some of these attributes
may be optional, they may considerably improve the quality of the
explanation, mostly from a visualization point of view. Note that
model attribues are static, they don’t vary from execution to
execution. Please refer to the model_info_attributes.txt file to see the
currently defined attributes among all the explainers available.

 Note: Regardless of the uploaded files, all the methods require an id to be
provided. If you want to test a method with your own model, upload a
folder containing the previously described files to the Models folder,
assigning an id of your choice. See the example below for a model with id
“PSYCHOLOGY”.

• url: External URL of the prediction function passed as a string. This
parameter provides an alternative when the model owners do not want to
upload the model file and the explanation method is able to work with a
prediction function instead of a model object. The URL is ignored if a
model file was uploaded to the server. This related server must be able
to handle a POST request receiving a multi-dimensional array of N data
points as inputs (instances represented as arrays). It must return an array
of N outputs (predictions for each instance). Refer to the External URLs
Examples folder if you want to quickly create a service using Flask to
provide this method. Please see the example in the section below.

• instance: This is a mandatory attribute for local methods, as it is the
instance that will be explained. It is an array containing the feature values
(which must be in the same order that the model expects). For images, it is a
matrix representing the pixels. It is also possible for image explainers to
pass a file instead of the matrix using the “image” argument.

• params: dictionary with the specific execution parameters passed to the
explanation method. These parameters are optional and depend on the
method being used. The value assigned to this parameters may signficantly
change the outcome of an explanation. For example, the “target_class” of a
counterfactual is an execution parameter. Refer to the documentation of
each method to know the configuration parameters that can be provided.

Getting Explanations Using External URLs Models

In some cases, uploading a model file to the server is not desired by the user or
simply not possible. Some explanation methods provide an alternative, as they
only need access to the prediction function of the model. The prediction function
can be easily wrapped as an HTTP POST method so that the explainers can access
the prediction function by making requests to a server administered by the user.
However, the implementation of the POST method must attain the expected
format:

• The POST method must receive a parameter named “inputs” and
return an array with the predictions. The format of the “inputs”
parameter, as well as the output, must be as follows:

http://model_info_attributes.txt/

D2.1b API for external contributors

D2.1b API for external contributors

– For Tabular and Text models:
• For Regression Models:

– inputs: array of shape (n, f) where n is the number of
instances and f is the number of features.

– output: array of shape (n,) where n is the number of
instances. Contains the predicted value for each
instance.

• For Classification Models:
– inputs: array of shape (n, f) where n is the number of

instances and f is the number of features. Contains the
predicted probabilities of each class for each instance.

– For Image models:
• inputs: Array of shape (n, h, w) for black and white images,

and shape (n, h, w, 3) for RGB images, where n is the number
of images, h the pixel height, and w the pixel width.

• output: array of shape (n, c) where n is the number of
instances and c is the number of classes. Contains the
predicted probabilities of each class for each image.

Notice that if you are using a model from Tensorflow or Scikit-learn, the predict or
predict_proba function of your model already matches this format. If you have
models from different architectures, some additional wrapping code may be
necessary to comply with this format.

For illustration purposes, we will implement the POST method with Flask using the
psychology model. Example implementations of external URL prediction functions
are available in the External_URLs folder.

1) If you are testing locally, launch the explainer libraries server as described
before.

2) For the server logic, load the previously trained model first. Then define the
POST method and add the inputs parameter to the parser. Load the contents of the
inputs parameter and pass them to the prediction function of your model. We use
the predict_proba function, as the psychology model is a scikit-learn classifier.
Finally, specify the path for the method by adding it to the API. Note: if you are
testing locally, make sure to assign a different port from the explainer libraries
server.

import sys
from flask import Flask
from flask_restful import Api,Resource,reqparse
import numpy as np
import json
import joblib

cli = sys.modules['flask.cli']
cli.show_server_banner = lambda *x: None
app = Flask(__name__)
api = Api(app)

D2.1b API for external contributors

D2.1b API for external contributors

#Load the model
model = joblib.load("PSYCHOLOGY.pkl")

class Predict(Resource):

 def post(self):
 #Add the 'inputs' argument
 parser = reqparse.RequestParser()
 parser.add_argument("inputs", required=True)
 args = parser.parse_args()

 #Get the inputs and pass them to the prediction function
 inputs = np.array(json.loads(args.get("inputs")))
 return model.predict_proba(inputs).tolist()

Add the resource to the API
api.add_resource(Predict, '/Predict')

if __name__ == '__main__':
 app.run(host="0.0.0.0", port=5001)

3) Run the server and test the POST method by passing the url parameter to the
explanation method. Remember that the url is ignored if a model file was uploaded
to the server, so make sure no model file is present in the corresponding folder.

Screenshot (166)

How to Collaborate to ExplainerLibraries

1) Fork the repo and clone it to our local machine.

2) Create our own branch.

3) Add the explainer file and make the necessary modifications.

4) Launch the application locally and test the new explainer.

5) Push the changes and create a pull request for review.

D2.1b API for external contributors

D2.1b API for external contributors

Adding New Explainers to the Catalogue

1) To add a new explainer, it is necessary to create a new Resource. First, go to the
resources/explainers folder and select the folder corresponding to the data type of
the explainer you want to add (If your explainer works with a different data type,
please add the corresponding folder to the resources folder). For illustration
purposes, we will walk through the steps of adding a “new” explainer (LIME
tabular).

2) Inside the appropriate folder, create a new .py file with the name of your
explainer. In our case, we create the lime.py file inside
resources/explainers/tabular/ .

3) Create a class for the explainer. This class needs to have two different methods:
post and get. You may also need to add an __init__ method to access the paths of
the models and uploads folders. In our example:

from flask_restful import Resource

class Lime(Resource):

 def __init__(self,model_folder,upload_folder):
 self.model_folder = model_folder
 self.upload_folder = upload_folder

 def post(self):
 return {}

 def get(self):
 return {}

5) In the post method, define the mandatory arguments that must be passed for
the explainer to get an explanation. The method must receive at least an id to
access the folder related to the model. After parsing the arguments, use the
function get_model_files, passing the id to fetch the model, data, and info files. It is
possible that some of these files do not exist, so make the appropriate checks
before using them. Generally, the steps involve loading the Dataframe with the
training data if it exists, then getting the necessary attributes from the info file,
then getting the prediction function if possible, and finally getting the
configuration parameters from the params object.

class Lime(Resource):

def post(self):
 parser = reqparse.RequestParser()
 parser.add_argument('id',required=True)
 parser.add_argument('instance',required=True)
 parser.add_argument('url')
 parser.add_argument('params')
 args = parser.parse_args()

 _id = args.get("id")
 url = args.get("url")

D2.1b API for external contributors

D2.1b API for external contributors

 instance = json.loads(args.get("instance"))
 params=args.get("params")
 params_json={}
 if(params !=None):
 params_json = json.loads(params)

 #Getting model info, data, and file from local repository
 model_file, model_info_file, data_file =
get_model_files(_id,self.model_folder)

 ## loading data
 if data_file!=None:
 dataframe = joblib.load(data_file) ##error handling?
 else:
 raise Exception("The training data file was not
provided.")

 ##getting params from info
 model_info=json.load(model_info_file)
 backend = model_info["backend"] ##error handling?
 kwargsData = dict(mode="classification", feature_names=None,
categorical_features=None,categorical_names=None, class_names=None)
 if "model_task" in model_info:
 kwargsData["mode"] = model_info["model_task"]
 if "feature_names" in model_info:
 kwargsData["feature_names"] = model_info["feature_names"]
 if "categorical_features" in model_info:
 kwargsData["categorical_features"] =
model_info["categorical_features"]
 if "categorical_names" in model_info:
 kwargsData["categorical_names"] = {int(k):v for k,v in
model_info["categorical_names"].items()}
 if "output_names" in model_info:
 kwargsData["class_names"] = model_info["output_names"]

 ## getting predict function
 predic_func=None
 if model_file!=None:
 if backend=="TF1" or backend=="TF2":
 model=h5py.File(model_file, 'w')
 mlp = tf.keras.models.load_model(model)
 predic_func=mlp
 elif backend=="sklearn":
 mlp = joblib.load(model_file)
 predic_func=mlp.predict_proba
 elif backend=="PYT":
 mlp = torch.load(model_file)
 predic_func=mlp.predict
 else:
 mlp = joblib.load(model_file)
 predic_func=mlp.predict
 elif url!=None:
 def predict(X):

D2.1b API for external contributors

D2.1b API for external contributors

 return np.array(json.loads(requests.post(url,
data=dict(inputs=str(X.tolist()))).text))
 predic_func=predict
 else:
 raise Exception("Either a stored model or a valid URL for
the prediction function must be provided.")

 #getting params from request
 kwargsData2 = dict(labels=(1,), top_labels=None,
num_features=None)
 if "output_classes" in params_json: #labels
 kwargsData2["labels"] =
json.loads(params_json["output_classes"]) if
isinstance(params_json["output_classes"],str) else
params_json["output_classes"]
 if "top_classes" in params_json:
 kwargsData2["top_labels"] =
int(params_json["top_classes"]) #top labels
 if "num_features" in params_json:
 kwargsData2["num_features"] =
int(params_json["num_features"])

 ...

6) Add the actual code for the generation of the explanation to the post method.
This depends entirely on the explanation method being used. Once the explanation
has been created, convert it to a JSON format if necessary. If the explanation is
returned as an html or png file, use the save_file_info function to get the upload
folder path, the name that will be given to the file, and the url (getcall) that will be
used to access the file. Save the file using this data and append the URL to the
returned JSON. Note: the URL to access the file returned by save_file_info does not
include the extension of the file, so it is necessary to append it at the end as it is
shown in the example.

class Lime(Resource):

def post(self):

 ...

 explainer =
lime.lime_tabular.LimeTabularExplainer(dataframe.drop(dataframe.column
s[len(dataframe.columns)-1], axis=1, inplace=False).to_numpy(),
 **{k: v
for k, v in kwargsData.items() if v is not None})
 explanation = explainer.explain_instance(np.array(instance,
dtype='f'), predic_func, **{k: v for k, v in kwargsData2.items() if v
is not None})

 ## Formatting json explanation
 ret = explanation.as_map()

D2.1b API for external contributors

D2.1b API for external contributors

 ret = {str(k):[(int(i),float(j)) for (i,j) in v] for k,v in
ret.items()}
 if kwargsData["class_names"]!=None:
 ret = {kwargsData["class_names"][int(k)]:v for k,v in
ret.items()}
 if kwargsData["feature_names"]!=None:
 ret = {k:[(kwargsData["feature_names"][i],j) for (i,j) in
v] for k,v in ret.items()}
 ret=json.loads(json.dumps(ret))

 ## saving to Uploads
 upload_folder, filename, getcall =
save_file_info(request.path)
 hti = Html2Image()
 hti.output_path= upload_folder
 hti.screenshot(html_str=explanation.as_html(),
save_as=filename+".png")
 explanation.save_to_file(upload_folder+filename+".html")

response={"plot_html":getcall+".html","plot_png":getcall+".png","expla
nation":ret}
 return response

7) For the get method, return a dictionary that serves as documentation for the
explainer that is being implemented. In our implementations, we include a brief
description of the explainer method and the parameters to the request, as well as
the configuration parameters that should be passed in the params dictionary. If
necessary, we also include an example of the params object. For example, for the
Tabular/LIME implementation:

 def get(self):
 return {
 "_method_description": "LIME perturbs the input data samples
in order to train a simple model that approximates the prediction for
the given instance and similar ones. "
 "The explanation contains the weight of
each attribute to the prediction value. This method accepts 4
arguments: "
 "the 'id', the 'instance', the
'url'(optional), and the 'params' dictionary (optiohnal) with the
configuration parameters of the method. "
 "These arguments are described below.",
 "id": "Identifier of the ML model that was stored locally.",
 "instance": "Array representing a row with the feature values
of an instance not including the target class.",
 "url": "External URL of the prediction function. Ignored if a
model file was uploaded to the server. "
 "This url must be able to handle a POST request
receiving a (multi-dimensional) array of N data points as inputs
(instances represented as arrays). It must return a array of N outputs
(predictions for each instance).",
 "params": {
 "output_classes" : "(Optional) Array of ints

D2.1b API for external contributors

D2.1b API for external contributors

representing the classes to be explained.",
 "top_classes": "(Optional) Int representing the number
of classes with the highest prediction probability to be explained.
Overrides 'output_classes' if provided.",
 "num_features": "(Optional) Int representing the
maximum number of features to be included in the explanation."
 }

8) Lastly, add the class as a resource and specify its route in the app.py and in the
explainerslist.py files. Also update the model_info_attributes.txt file if you are
using a new model attribute that was not included before. In our example:

from resources.explainers.tabular.lime import Lime
api.add_resource(Lime, '/Tabular/LIME')

D2.1b API for external contributors

D2.1b API for external contributors

Software Repositories

Github Repositories

https://github.com/isee4xai/iSeeBackend/tree/dev/AI%20Mo

del%20lib

https://github.com/isee4xai/ExplainerLibraries

Reproducible Capsule

https://explainers-dev.isee4xai.com

https://models-tf-dev.isee4xai.com

https://models-sk-dev.isee4xai.com

https://github.com/isee4xai/iSeeBackend/tree/dev/AI%20Model%20lib
https://github.com/isee4xai/iSeeBackend/tree/dev/AI%20Model%20lib
https://github.com/isee4xai/ExplainerLibraries
https://explainers-dev.isee4xai.com/
https://models-tf-dev.isee4xai.com/
https://models-sk-dev.isee4xai.com/

D2.1b API for external contributors

D2.1b API for external contributors

Source code repository branching conventions

Git and GitHub will be used to control the development of the different modules of the

iSee platform. In order to ensure a high quality of the development and the

management of the different code source repositories, the following rules will be

applied:

● The ‘main’ branch must only contain stable code and the different releases of

the iSee modules. No direct pushes are allowed to this branch; all commits must

be pushed through Pull Requests and will be merged into the ‘main’ branch after

a code review.

● The ‘dev’ branch is the main development branch that contains the code that

will be deployed on the development test platform. An automated continuous

integration / deployment (CI/CD) workflow will be created to a) build the virtual
container and b) deploy it on the test platform when a new code is pushed to

this branch.

As for the ‘main’ branch, no direct pushes are allowed to this branch; all commits
should be pushed through Pull Requests.

● Other (temporary) branches: these are the branches that can be created and
deleted when needed, for bug fixes, experimental testing and new features.

These branches must have a meaningful naming and be deleted when no longer

used.

● iSee developers should work on their own branches and create a Pull Request

when code is ready to be deployed.

D2.1b API for external contributors

D2.1b API for external contributors

Naming convention of the containers

All iSee modules are delivered as Docker containers (or similar technology) to promote

the scalability and stability of the platform. The naming/tagging convention of these

containers are as follow:

isee4xai/<module>:<tag>

where

● <module> is the module name aligned with code source repository name.

● <tag> can be either:

○ ‘dev’: the current code at development branch

○ ‘X.Y’: (eg: 1.2) the major and minor versions of official stable releases

○ ‘latest’: the latest official stable release.

	Global architecture
	Generic API of the AI Model Library
	Requirements
	Retrieving a model’s parameters
	Retrieve a dataset (optional)
	Predicting with an image
	Predicting with a tabular set

	Scikit-learn API of the Model Library
	Launching the API
	Without an storage path
	Requirements
	Running the API

	With an storage path
	Requirements
	Running the API

	Basic functions
	Uploading a model
	Updating a model
	Uploading a dataset
	Retrieve a dataset
	Deleting a model
	Retrieving a model’s parameters
	Predicting with an image
	Predicting with a tabular set

	TensorFlow API of the Model Library
	Launching the API
	Without an storage path
	Requirements
	Running the API

	With an storage path
	Requirements
	Running the API

	Basic functions
	Uploading a model
	Updating a model
	Uploading a dataset
	Retrieve a dataset
	Deleting a model
	Retrieving a model’s parameters
	Predicting with an image
	Predicting with a tabular set

	Explainer Library
	Using the API with Postman
	Launching with Python
	Making Requests
	Visualizing Explanations

	About the Parameters
	Getting Explanations Using External URLs Models
	How to Collaborate to ExplainerLibraries
	Adding New Explainers to the Catalogue

	Software Repositories
	Source code repository branching conventions
	Naming convention of the containers

